

Boiler Controller

PLATINUM BIO

Index

1 General information	5
1.1 Introduction	5
1.2 Features	5
1.3 Safety precautions	7
1.4 Disposal of old equipment	8
2 Connecting to the system	9
2.1 General requirements	9
2.2 Location	9
2.3 Connecting	10
3 Overview of the basic functions	12
3.1 Control panel	12
3.1.1 The status LED	
3.1.2 Buttons	13
3.1.3 Graphic display	13
3.2 Statuses of furnace	14
4 Handling	15
4.1 Navigation in the menu	15
4.2 Starting regulator - ON	15
4.3 Switching off the regulator - OFF	15
4.4 Time scheduling	16
4.5 Service password	17
5 Simple menu	18
5.1 Simple menu screens	18
6 Main menu	20
6.1 Heating	21
6.1.1 Selection of circuit	21
6.1.2 State	21
6.1.3 Settings	22
6.1.4 Time program	22
6.1.5 Service	23
6.2 Hot water	25
6.2.1 Selection of circuit	25

Index

6.2.2 State	25
6.2.3 Settings	26
6.2.4 Time program	26
6.2.5 Service	27
6.3 Buffer	28
6.3.1 State	28
6.3.2 Settings	28
6.3.3 Time program	29
6.3.4 Service	29
6.4 Boiler	30
6.4.1 State	30
6.4.2 Settings	30
6.4.3 Service	31
6.5 Settings	32
6.5.1 Date and time	32
6.5.2 Language	32
6.5.3 General settings	32
6.5.4 Service	32
6.6 Burner	35
6.6.1 State	35
6.6.2 Settings	35
6.6.3 Service	36
6.7 Alarms	37
6.7.1 Alarm codes	37
6.8 Solar	43
6.8.1 State	43
6.8.2 Settings	43
6.8.3 Service	44
6.9 Info	44
7 Expansion of the system - CAN bus	45
7.1 Lambda sensor	48
7.2 Solars	50
8 Specification	52
•	

1 General information

Thank you for choosing our product and congratulations on a good decision. We will be grateful for comments concerning the unit's performance.

ESTYMA electronics Team

1.1 Introduction

Controller Platinum Bio is a modern microprocessor system, which controls not only the boiler, but also the central heating system and domestic hot water.

The device controls the burning process by providing the appropriate amount of air and fuel. By using solid state relays the power of blower is regulated smoothly.

Thanks to the advanced algorithm and possibility to regulation of many parameters, the system can be very flexible to adapt to the needs of the heating system.

1.2 Features

Graphic display – thanks to a large graphic display FSTN handling device is intuitive.

Large fonts and icon - to improve ease of handling equipment for elderly people.

Two types of menus - menus simple and sophisticated. During the daily operation of the device can support is easily accessible from the simple menu.

Info button - the controller is equipped with the function of intelligent assistance. Each parameter is described, calling the description is done by pushing the info button.

1 General information

The modular construction of the CAN - using industrial CAN bus data exchange (mainly used in the demanding automotive industry), it is possible to expansion of the system. The maximum extension is 16 heating circuits, two circuits of hot water, energy buffers and solars.

Buffer - controlling the heating system in combination with heat storage reservoir.

Solars - the controller controls the solar system.

Powerful modern 32-bit ARM processor (ARM family is widely used in mobile phones) - enables advanced controlling algorithm device Fuzzy Logic II generation.

The history of alarms and errors - the controller keeps a history of the last 20 errors and alarms with a description, date of creation and the date of confirmation.

Clock with calendar - the clock allows to program in a weekly cycle required temperatures in the rooms and hot water which contributes to a reduction in expenditure on fuel.

Statistics - in memory controller stores statistical data of the system, so it is possible to observe the work and reduce fuel consumption. For example, monitoring temperature and power boiler burner. Feeder operating time of the fuel.

Beep sound alarm - built-in piezoelectric loudspeaker signals the occurrence of an alarm in the boiler, which increases operational safety of the device.

Resetting - function allows you to restore factory settings of the controller.

1.3 Safety precautions

Warning – risk of electric shock!

- Before assembly or disassembly of the unit, disconnect the power supply in the switchgear.
- Read this operation manual carefully and thoroughly before using the unit.
- Keep this operation manual and refer to it whenever you work with this unit in the future.
- Apply all the rules and heed all the warnings included in the unit operation manual.
- Make sure that the unit is not damaged. In case of any doubts, do not use the unit and contact the supplier.
- In case of any doubts concerning the safe operation of the unit, contact the supplier.
- Pay special attention to all warning signs on the unit casing and its package.
- Use the unit as intended.
- The unit is not a toy. Do not allow children to play with it.
- Under no circumstances children should be allowed to play with any parts of the package of the unit.
- Access to small parts such as clamping screws or bolts should be secured against children. Such elements may be delivered with the unit and may result in choking when swallowed by a child.
- Do not make any mechanical or electrical changes to the unit. Such changes may cause the unit to malfunction and fail to meet the relevant standards, leading to an adverse impact on the performance of the unit.
- Do not insert any objects into the unit through openings (e.g. ventilation grills), as this may cause short circuiting, electric shock, fire or damage to the unit.
- Do not allow water, humidity or dust to enter the unit, as this may cause short circuiting, electric shock, fire or damage to the unit.
- Provide adequate ventilation of the unit, do not cover or block the ventilation grills, and ensure that there is free flow of air around the unit.
- The unit should be installed indoors unless it is adapted for outdoor operation.
- Do not expose the unit to mechanical impacts and vibrations.
- When connecting the unit to power supply, make sure that the parameters of the supply network are within the unit's operating range.

1 General information

- In order to avoid the risk of electric shock, connect the unit to a socket with an earthing pin. The socket must be properly earthed by a licensed electrician.
- When connecting the unit, make sure that it does not overload the electrical circuit. Avoid connecting the unit to one circuit with motors and other equipment that causes impulse interference (e.g. washing machines, fridges, ...)
- It is absolutely necessary to cut off power supply before connecting any cables or peripherals to the unit.
- Remove the plug from the socket in order to completely de-energize the unit, especially if you do not intend to use the unit for a longer period of time.
- Protect the power lead against damage; it should be laid in a way that ensures that nobody treads on it; no objects should stand on the power lead.
- All electrical connections must be as shown in the electrical assembly drawings and must comply with national and/or local regulations concerning electrical connections.
- This unit contains no parts that may be replaced by the user. All maintenance work except for cleaning, fuse replacement (when the unit is de-energized), and function setting, should be performed by an authorized service provider.
- Before doing any maintenance work, you must cut off the power supply to the unit.
- Do not clean the casing of the unit with petrol, solvents or any other chemicals that may damage the casing of the unit. Using a soft cloth is recommended.
- If the power lead is damaged, the unit must not be used. The damaged lead must be replaced by a maintenance service provider, with a new one having the same parameters as the original lead.

1.4 Disposal of old equipment

This electronic equipment is made of materials which are partly recyclable. Therefore, when the equipment has reached the end of its service life, take it to an electrical and electronic equipment recycling centre or to the manufacturer. The equipment must not be disposed of with other household waste.

2 Connecting to the system

2.1 General requirements

Read this operation manual carefully and thoroughly before you start using the unit.

The person installing the unit should have sufficient technical experience.

Copper wire connections should be designed to work in temperatures of up to $+75^{\circ}C$.

All connections made must be as shown in the electrical wiring assembly drawings and must be compliant with national and/or local regulations concerning electrical connections.

WARNING !!! The device must be connected to a separate electrical circuit equipped with an appropriately sized circuit breaker and residual current circuit breaker.

2.2 Location

The unit is intended for indoor installation only. After selecting the location, make sure that it meets the following requirements:

1. The location must be free from excessive humidity and from flammable or corrosive vapours.

2. The unit must not be installed near high power electrical equipment, electrical machines or welding equipment.

3. The temperature in the location must not exceed 60°C and should not be lower than 0°C. Humidity should be within the range from 5% to 95%, with no vapour condensation taking place.

2.3 Connecting

Connect to a controller necessary to operate sensors and actuators as needed. The figure shows the connected devices. In the tables is a description of inputs and outputs.

WARNING !!! Never connect the protective conductor (PE) with a neutral (N, N1).

WARNING !!! Wiring must be done with the device disconnected from the power supply. Connections should be exercised by a person possessing adequate permissions in this area.

2 Connecting to the system

INPUTS		
Description Explanation		
Photo	Brightness sensor in the burner	
Tboiler	Boiler temperature sensor	
Tburner	The temperature sensor burner	
Thw	The temperature sensor hot water	
Troom	Room temperature sensor	
GND	Mass electric to connect sensors	

OUTPUTS		
Description Explanation		
Phw	Circulating pump for hot water	
Igniter	Ignition burner	
Pch	Central heating circulating pump	
Blower	Burner blower	
Feed.tank	Feeder cartridge	
Feed.burn.	Feeder burner	
Ν	Neutral standing	
N1	Neutral separable such as by STB	
PE Protective		

3 Overview of the basic functions

3.1 Control panel

Buttons (3.1.2) The status LED (3.1.1)

3.1.1 The status LED

Status	Importance
Green light continuously	Controller OFF
Green blinks	Controller enabled, burner OFF
Orange light continuously	Controller enabled, burner enabled
Orange blinks	Burner works
Red light continuously	There is an alarm to be confirmed
Red blinks	Alarm active

3 Overview of the basic functions

3.1.2 Buttons

Button	Function
Ð	Back up one level in the menu, the resignation of the changing parameter.
Back, esc	Pressing on the main screen (> 3 seconds) changes the state of
	the controller to ON / OFF (enabled / disabled).
U	Down arrow. Navigating the menu, reducing the value of the parameter being edited. On main screen, enter the simple menu.
Down arrow	
Info	Info. Shows the navigation information and descriptions of the regulated parameters.
	Up arrow. Navigating through menus, increasing the value of the
	parameter being edited.
	On main screen, enter the simple menu.
Up arrow	
	Enter. Entry to main menu. Acceptance of changes in the value of the parameter being
-	edited.
Confirmation, enter	Confirmation of the alarm.

3.1.3 Graphic display

3.2 Statuses of furnace

Status	Description
TURNED OFF	The burner is not working. Permission to work off.
CLEANING	Cleaning the burner by strong stream of air.
FIRING UP	Firing up fuel.
	Providing the initial dose of fuel to run igniter and blower.
INCANDESCING	When the flame in phase of the firing up is discovered, starts
	providing additional portions of fuel and increase the power of
	blower for arcing furnace.
POWER 1	The burner works with the power first.
POWER 2	The burner works with the power of a second.
MODULATION	The burner works with a modulated power.
BURNING OFF	Quenching of the furnace. Work of burner and blower tray until
	the complete disappearance of the flame.
STOP	Burner does not work but it is to agree to his work. The required
	boiler temperature is reached.

4 Handling

4.1 Navigation in the menu

The device has two types of menus: simple and main menus.

Simple menu - allows for quick access to basic controller functions. Enter the menu is simple by pressing the "up arrow" or "down arrow" on the main screen. Description of a simple menu in chapter 5.

Main menu - allows you to access all the functionality of the controller (monitoring, adjustments and service settings.) Access to the main menu is done by pressing the button "Confirm, enter" on the main screen. Description of the main menu in Chapter 6

Back to the main screen is possible from any screen by pressing the button "Back, esc" several times.

4.2 Starting regulator - ON

To run the controller (ON mode) for 3 seconds to press the "Back, esc" on the screen when it is in the OFF mode.

4.3 Switching off the regulator - OFF

To turn off the controller (OFF mode) for 3 seconds to press the "Back, esc" on the screen when he is in the ON mode.

WARNING !!! When you turn off the controller, depending on the previous state, the burner can still work (quenching), the state should not be interrupted. If the device is to be excluded from the power supply, wait quenching process, until the status of the burner is "off".

4 Handling

4.4 Time scheduling

Controller is equipped with a clock and calendar. This makes it possible to program the operation of individual circuit elements for heating depending on the time and day of week. Date and time are not reset during a power failure, because the controller is equipped with a battery that should be replaced every two years.

Programming takes place in the menu of the circuit (eg, hot water, heating, buffer) and for each item carried in the same way.

Selecting the day of week. Upon entry in the "Programme Time" day of the week flashes. Arrow buttons to select the day you want to set or just check the settings of the program.

Programming. After selecting the day of week and approved "ENTER", indicator being programmed hours flashes. At the same time also displays the time, and the next to it icon that represents the currently selected setting time (the symbol of the sun means comfort temperature, the moon is a symbol of the economic temperature.) To move to the next hour, press the down arrow (economy temperature) or the up arrow (comfort temperature). If the day is already programmed in accordance with our wish, press "ENTER". After approved the changes (or cancellation) will blink day of the week.

The figure shows an example of the preset day of the week.

Temp. economy from 00:00 to 6:00 Temp. comfortable from 6:00 to 9:00 Temp. economy from 9:00 to 18:00 Temp. comfortable from 18:00 to 24:00

WARNING !!! Values of temperatures comfortable and economical are set in the "SETTINGS" menu and may be different for each of the circuits. To make the time program work, you must also enable a timed mode in the "SETTINGS" menu.

4.5 Service password

Access to the service parameters are password protected. After entering the correct password, access will be lifted. Access to the service parameters will be locked after a period of 10 minutes without pushing buttons.

Service code is a temperature of the boiler in menu BOILER / SETTINGS and 3 letters "EST".

Example: If the temperature of the boiler in menu BOILER / SETTINGS is 60 ° C, password is "60EST''.

WARNING !!! Access the service is intended only for qualified technical personnel. The changes may cause malfunction of the system.

5 Simple menu

5.1 Simple menu screens

Screen	Description
	Shows the current temperature of the boiler (large font) and the desired temperature (small font). After pressing the "ENTER" set the desired temperature of the boiler.
HOT WATHER TEMPERATURE 40.240	Shows the current temperature of hot water (large font) and the desired temperature (small font). After pressing the "ENTER" set the desired temperature of hot water. <i>Menu relates to the circuit No. 1</i>
	Disposable heating hot water to a comfortable temperature regardless of the program. <i>Menu relates to the circuit No. 1</i>

5 Simple menu

HOT WATHER PROGRAM	Set the mode a hot water: a) time - according to the programmed timescales b) constatant - regardless of the time intervals comfortable temperature is maintained c) disabled - off the heat <i>Menu relates to the circuit No. 1</i>
	Shows the current temperature in the room No 1 (large font) and the value of the desired (small font). After pressing the "ENTER", go to set the desired temperature in the room. <i>Menu relates to the circuit No. 1</i>
HEATING PROGRAM	Set the mode a heating circuit: a) time - according to preset ranges b) constant - regardless of the time intervals comfortable temperature is maintained c) disabled - off the heat <i>Menu relates to the circuit No. 1</i>
	Allow for operation of the burner. When not consent to the burner operation, regulator controls the heating system, but do not attach the burner.
	Manual start of the fuel feed from the tray. Useful function after the exhaustion of fuel from the cartridge. After refilling the fuel cartridge, run the "enter fuel" until the fuel gets into the burner.

6 Main menu

6.1 Heating

6.1.1 Selection of circuit

Allows you to select a number of central heating circuit. The selection of the circuit make arrows.

C.H. SELECT	20:54
	Ĩ
CIRCUIT NO: 1	
kitchen	

6.1.2 State

Allows you to monitor the status of central heating system.

6.1.3 Settings

Settings	
Function	Description
Comfortable temp.	Desired temperature in the room during the
	heating.
Programme	Programs:
	a) time - according to preset intervals
	b) constant - regardless of the time intervals
	comfortable temperature is maintained
	c) disabled - off the heat
	d) economic - in the rooms temperature is
	maintained the economic
Economical temp.	Desired temperature in the room outside the
	period of heating.

6.1.4 Time program

Used to configure the time program steering central heating.

Description of the adjustment time program refer to chapter 4.4.

6.1.5 Service

WARNING !!! Access the service is intended only for qualified technical personnel. The changes may cause malfunction of the system.

Service	
Function	Description
Comf. MAX pump temp.	Maximum outdoor temperature at which the
	circulating pump can work in a comfortable
	range.
Econ. MAX pump temp.	Maximum outdoor temperature at which the
	circulating pump can work in a economic
	range.
MIN Tch pump	Minimum temperature calculated for central
	heating at which the circulating pump can be
	operated.
Source	Specifies the source of energy for central
	heating circuit.
Temperature MAX	Maximum temperature for central heating.
Mixer time	Time of full opening of the mixer.
Hot water priority	Priority for hot water of the heating circuit.
	During heating hot water the central heating
	pump is not working.
Pump test	Starts the pump regardless of other
	conditions.
Mixer test	Starts the mixer motor independently of the
	other conditions.
Circ. name	Gives name for the central heating circuit.
CH temp. for -20°C	The point of the heating curve for -20 ° C.
CH temp. for 0°C	The point of the heating curve for 0 ° C.
CH temp. for 10°C	The point of the heating curve at 10 ° C.

Service	
CH temp. for corr. factor	Central heating temperature correction
	required the desired room temperature for 1 °
	C. For example, if the correction factor is set
	at 6 ° C, room temperature set at 20 ° C and
	measured in the room is 20.5 ° C then the
	temperature calculated at will be reduced by
	3 ° C.
Mode type	Specifies the input mode central heating
	temperature:
	manual - the temperature of central heating
	inflicted manually,
	weather - the temperature of central heating
	calculated from the heating curve.
Manual Tch	The desired temperature of central heating
	when the mode is set to manual.
Room temp. sensor	Specifies whether the system uses a room
	sensor.
CH temp. sensor	Specifies whether the system uses a sensor
	heating.
Permanent pump	Yes - the pump runs at a given temperature
	in the room, reduced the temperature for
	heating (only with the use of a sensor for
	central heating and room sensor),
	No - after reaching the set temperature in the
	room the pump is turned off.

6.2 Hot water

6.2.1 Selection of circuit

Allows you to select the number of hot water circuit.

H.W. SELECT	20:54
	P.
H.W. NO: 1	
salon	

6.2.2 State

Allows you to monitor the status of hot water.

6.2.3 Settings

Settings	
Function	Description
Comfortable temp.	Desired temperature of hot water during
	heating.
Programme	Set the mode a circuit:
	a) time - according to preset ranges
	b) constant - regardless of the time intervals
	comfortable temperature is maintained
	c) disabled - off the heat.
Heat now	Heats hot water once to a comfortable
	temperature regardless of the program.
Hysteresis	The value of which can reduce the
	temperature of hot water.
Economical temp.	Desired temperature of hot water outside the
	period of heating.

6.2.4 Time program

Used to configure the time steering hot water preparation.

Description of the adjustment time refer to chapter 4.4.

6.2.5 Service

WARNING !!! Access the service is intended only for qualified technical personnel. The changes may cause malfunction of the system.

Service	
Function	Description
Source delta	Increasing the temperature of the source of
	the desired temperature of hot water during
	heating.
Source	Specifies the source of energy for hot water.
Temperature MAX	Maximum temperature of hot water.
Delta MIN temp.	The minimum temperature difference
	between the source and the hot water at
	which the pump can work.
Pump test	Starts the pump regardless of other
	conditions.
Circ. name	Gives name for the hot water circuit.

6 Main menu

6.3 Buffer

6.3.1 State

6.3.2 Settings

Settings	
Function	Description
Upper set temperature	Below this temperature in the upper part of the
	buffer starts charging.
Lower set temperature	Above this temperature at the bottom of a buffer
	completes the process of charging.
Programme	Constant - the buffer is charged regardless of the
	time,
	time - the buffer charged only at specified
	intervals. Intervals are set in the "time program",
	disabled - off charging buffer.

6.3.3 Time program

Used to configure time program to controlling charging buffer.

Description of program adjustment time refer to chapter 4.4.

6.3.4 Service

WARNING !!! Access the service is intended only for qualified technical personnel. The changes may cause malfunction of the system.

Service	
Function	Description
Minimal pump temp.	The minimum temperature in the upper part
	of the buffer at which the circulating pump
	can work for central heating.
Auto upper temp.	Specifies whether the upper temperature
	buffer (minimum) is requested manually or
	automatically. Automatically based on the
	needs of other power consumers in the buffer.

6.4 Boiler

6.4.1 State

Statistics of the boiler in the past 24 hours. The graph shows the temperature of the boiler and power of burner. "Hours" refers to how many hours ago the boiler behaved these operating parameters. Across the screen are displayed statistics of 2 hours. Screens switching buttons "up" and "down".

6.4.2 Settings

Settings	
Function	Description
Boiler temp. set	Heating water temperature in the boiler which
	will be maintain the controller. Menu is active
	only in continuous work mode.

6.4.3 Service

WARNING !!! Access the service is intended only for qualified technical personnel. The changes may cause malfunction of the system.

Service	
Function	Description
MIN pump temp.	The temperature above which the the controller
	can attach pumps.
Mode	Operating mode of boiler:
	a) auto - temperature calculated automatically
	b) continuous - the temperature is kept constant
Hysteresis	The temperature of the boiler must be reduced
	by this value to launch the burner.
MIN return temp.	Minimal return to boiler temperature maintain by
	mixer.
Return mixer time	Specifies the time of full opening of the return
	mixer.
Boiler pump test	Starts boiler pump regardless of other
	conditions.
Return mixer test	Starts actuator of the return mixer regardless of
	other conditions.

6.5 Settings

6.5.1 Date and time

Using this menu is made to set the date and time of the driver.

6.5.2 Language

Use this menu to select language of the menu.

6.5.3 General settings

6.5.3.1 Alarm buzzer

We define here, if the driver shall notify of alarms by acoustic signal.

6.5.4 Service

WARNING !!! Access the service is intended only for qualified technical personnel. The changes may cause malfunction of the system.

6.5.4.1 Module configuration

Menu is used to configure the CAN network. In the menu, select the modules that are connected to the system.

WARNING !!! A detailed description of the modules and their destination are described in the manual of expansion modules.

SUMMARY OF THE EXPANSION MODULES	
Module	Description
Module no. 0	3 heating circuits of the numbers 2,3,4.
	Outdoor temperature sensor.
Module no. 1	3 heating circuits of the numbers 5,6,7.
Module no. 2	3 heating circuits of the numbers 8,9,10.
Module no. 3	3 heating circuits of the numbers 11,12,13.
Module no. 4	3 heating circuits of the numbers 14,15,16.
Module no. 5	Buffer.
	Solar collectors.
	Hot water no. 2.
	Return temperature sensor.
Module no. 6	Not used.
Module no. 7	Not used.
Module Lambda	Module of the Lambda sensor.

6 Main menu

6.5.4.2 System configuration

Menu is used to configure the heating system (hydraulic). The possibility of settings is dependent of number of expansion modules connected in the system.

WARNING !!! You must first configure the modules.

SYSTEM CONFIGURATION	
Function	Description
Number of CH circuits	Specifies the number of heating circuits in the
	system.
Number of HW circuits	Specifies the number of hot water circuits in
	the system.
Number of buffers	Specifies the number of buffors in the system.
Outside temp. sensor	Specifies if in the system is installed outside
	temperature sensor (module 0).
Return temp. sensor	Specifies if in the system is installed return
	temperature sensor (module 5).
Solars	Specifies if the system is equipped with solar
	collectors.

6.5.4.3 Restore to factory settings

This function allows the controller to restore the factory settings.

WARNING !!! Will be restored all factory settings, which can cause your system to malfunction. After restoring the factory settings may be need to reconfigure the controller settings.

6.6 Burner

6.6.1 State

6.6.2 Settings

Settings	
Function	Description
Feed fuel now	Starts fuel feeding screw regardless of other features.
Burner on	Consent to work of the burner.
Fuel type	Specifies the type of fuel.

6.6.3 Service

WARNING !!! Access the service is intended only for qualified technical personnel. The changes may cause malfunction of the system.

Service	
Function	Description
	Minimum amount of air during modulation where
Air MIN (20%)	power of burner is 20% or power number is 1.
Air MAX (100%)	Maximum amount of air during modulation where
	power of burner is 100% or power number is 2.
	Maximum time during fuel feeding when power of
Feeding MAX (100%)	modulation is 100% or power number is 2 on every 20
	seconds.
Power MIN (FL2)	Minimal burner power during modulation.
Power MAX (FL2)	Maximal burner power during modulation.
Modulation type	Burner mode, power modulation or two power levels.
	Brightness in the the burner over which is recognized
Photo threshold	as a fire.
Igniter test*	Turn on igniter for testing.
Heater feeder test*	Turn on burner feeder for testing.
Storage feeder test*	Turn on storage feeder for testing.
Blower test*	Turn on blower for testing.
Test fuel mass	Fuel mass obtained during continuous fuel feeder work
	through 1 hour (in kg).
Fuel calorific value	Fuel calorific value (in kWh/kg).
Lambda control	Determine whether regulator consider or not oxygen
Lambda control	concentration.
Oxygen MIN (20%)	Oxygen target for minimal power.
Oxygen MAX (100%)	Oxygen target for maximal power.

* testing equipment in the menu "BURNER" is only possible when the controller is in the OFF mode.

6.7 Alarms

This menu contains a history of up to 20 alarms that occurred during the controller work. The importance of alarm codes was presented in table below.

6.7.1 Alarm codes

ALARM CODES AND THEIR SIGNIFICANCE			
CODE	Short description	Explanation	
4	.	Procesor overheating. The reason may be improper	
1	Processor overheating	installation location of the controller.	
		The controller detected a lack of flame in the	
2	No fire / fuel	burner. The reason could be the end of the fuel or	
		the flame goes out.	
3	Burner overheating	The temperature of the burner has reached its	
5	Burner overneating	maximum value!	
		The controller detected shorted boiler temperature	
4	Boiler sensor shorted	sensor. The reason may be damaged sensor or	
		connection cable.	
		The controller detected open boiler temperature	
5	Boiler sensor open	sensor. The reason may be damaged sensor or	
		connection cable.	
	Burner sensor shorted	The controller detected shorted burner temperature	
6		sensor. The reason may be damaged sensor or	
		connection cable.	
	Burner sensor open	The controller detected open burner temperature	
7		sensor. The reason may be damaged sensor or	
		connection cable.	

•		Boiler temperature has exceeded the maximum
8	Boiler overheating	value!
0		Probable damage the controller!
9	Processor reset	Possible to loss of power supply.
10	STB	
11	Communication with module 0	
12	Communication with module 1	
13	Communication with module 2	
14	Communication with module 3	
15	Communication with module 4	
16	Communication with module 5	
17	Communication with module 6	
18	Communication with module 7	
19	HW sensor shorted	
20	HW sensor open	
21	Room temp. sensor shorted	
22	Room temp. sensor open	
23	Quenching error	
24	Lambda communication	
25	Solars overheating	
26	Solars freezing	
	The cod	les of the modules
33	Shorted IN1 Module 0	
34	Shorted IN2 Module 0	
35	Shorted IN3 Module 0	
36	Shorted IN4 Module 0	
37	Shorted IN5 Module 0	
38	Shorted IN6 Module 0	
39		
40		
41		
42		
43	Shorted IN11 Module 0	
44		
45	Open IN1 Module 0	
46	Open IN2 Module 0	

47	Open IN3 Module 0	
48	Open IN4 Module 0	
49	Open IN5 Module 0	
50	Open IN6 Module 0	
51		
52		
53		
54		
55	Open IN11 Module 0	
56		
57		
58	Overheating Module 0	
65	Shorted IN1 Module 1	
66	Shorted IN2 Module 1	
67	Shorted IN3 Module 1	
68	Shorted IN4 Module 1	
69	Shorted IN5 Module 1	
70	Shorted IN6 Module 1	
71		
72		
73		
74		
75		
76		
77	Open IN1 Module 1	
78	Open IN2 Module 1	
79	Open IN3 Module 1	
80	Open IN4 Module 1	
81	Open IN5 Module 1	
82	Open IN6 Module 1	
83		
84		
85		
86		
87		

88		
89		
90	Overheating Module 1	
97	Shorted IN1 Module 2	
98	Shorted IN2 Module 2	
99	Shorted IN3 Module 2	
100	Shorted IN4 Module 2	
101	Shorted IN5 Module 2	
102	Shorted IN6 Module 2	
103		
104		
105		
106		
107		
108		
109	Open IN1 Module 2	
110	Open IN2 Module 2	
111	Open IN3 Module 2	
112	Open IN4 Module 2	
113	Open IN5 Module 2	
114	Open IN6 Module 2	
115		
116		
117		
118		
119		
120		
121		
122	Overheating Module 2	
129	Shorted IN1 Module 3	
130	Shorted IN2 Module 3	
131	Shorted IN3 Module 3	
132	Shorted IN4 Module 3	
133	Shorted IN5 Module 3	

134	Shorted IN6 Module 3
135	
136	
137	
138	
139	
140	
141	Open IN1 Module 3
142	Open IN2 Module 3
143	Open IN3 Module 3
144	Open IN4 Module 3
145	Open IN5 Module 3
146	Open IN6 Module 3
147	
148	
149	
150	
151	
152	
153	
154	Overheating Module 3
161	Shorted IN1 Module 4
162	Shorted IN2 Module 4
163	Shorted IN3 Module 4
164	Shorted IN4 Module 4
165	Shorted IN5 Module 4
166	Shorted IN6 Module 4
167	
168	
169	
170	
171	
172	
173	Open IN1 Module 4
174	Open IN2 Module 4

Open IN3 Module 4 Open IN4 Module 4 Open IN5 Module 4 Open IN6 Module 4
Dpen IN5 Module 4
Dpen IN6 Module 4
Overheating Module 4
Shorted IN1 Module 5
Shorted IN2 Module 5
Shorted IN3 Module 5
Shorted IN4 Module 5
Shorted IN6 Module 5
Shorted IN7 Module 5
Shorted IN8 Module 5
Shorted IN9 Module 5
Overheating Module 5

6.8 Solar

6.8.1 State

6.8.2 Settings

Settings		
Function	Description	
Turn on delta	Temp. difference between solar and	
	accumulator needed for solar pump turn on.	
Turn off delta	Temp. difference between solar and	
	accumulator needed for solar pump turn off.	

6.8.3 Service

Service		
Function	Description	
Schematic	Solar system schematic.	
Flow [l/min]	Heating fluid flow in I/min.	
Fluid specific heat	Specific heat of heat-transfer fluid [kJ/(kg*K)].	
MAX HW temp.	Over this hot water temp. solar pump is turn off.	
Solar alarm temp. MAX	Maximal temp. of solar collector. Alarm and damage preservation procedure are taken over this temp.	
Solar alarm temp MIN	Minimal temp. of solar collector. Alarm and antifreeze procedure are taken under this temp.	
Solar pump test	Allow for solar pump testing.	

6.9 Info

There you will find useful information about the controller, including the version of software.

7 Expansion of the system - CAN bus

The controller is equipped with a high bandwidth CAN bus used to communicate with the modules. Thanks to the well-known for their reliability, widely used in automotive bus system is expandable to the highest level.

Use of CAN bus carries several advantages. Gain above all the possibility of using broadband Lambda oxygen sensor and the using additional of expansion modules rozszerzeniowych I / O we can install throughout the system:

- to 16 are heating circuits,
- 2 circuits of hot water,
- heat storage tank (buffer),
- solar system (solars).

CAN bus connecting cable should be placed in conduit cable and connected to the controller in accordance with the following sign.

Cable connection:		
L – line LOW (white)		
H – line HIGH (brown)		
GND – ground (grey)		

For connections on the CAN bus should be only used cable **LiYCY 2x0,25**. Only this type of cable gives the proper work of devices. Connections perform in a serial manner, this represents a figure below.

Plugging in expansion modules you need to remember to correctly set the terminator, which should be attached only at the last module throughout the system, even if the module is the only one.

After performing all the connections you must configure the module settings. Make this by selecting the modules that are connected to the network. More about the configuration each of expansion modules can be found in chapter 6.5.4.1 and instruction of the enlargement module I/O.

After finishing configuration of expansion modules to do remains only a change the system settings. Menu is used to configuration the heating system and the possibility of settings is dependent of number of arranged expansion modules. The table describing the functions refer to chapter 6.5.4.2.

On the next page is a sample diagram of the system. Please note that this is only overhead view, not containing all the elements of the system.

IMPORTANT! Scheme does not include all elements of the system.

7 Expansion of the system - CAN bus

7.1 Lambda sensor

Lambda sensor we can connect to the system in two ways:

- directly to the controller, if the entire system with CAN bus module will only use Lambda oxygen sensor,
- through enlargement module I/O with the number 5, if in the system there are other modules enlargement.

After connecting the module configure the controller yet. For this purpose, proceed as explained below.

From the main menu select **SETTINGS**

Then in the mode $\ensuremath{\textbf{SERVICE}}$ enter the access code

After inputting the correct code, run the **MODULES CONFIGURATION**

MODULATION	20:54
Module 6	NO
Module 7	NO
Module Lambda	YES

Find **Lambda Module** and turn it on by changing the option to **YES**

At this point, turned on the module Lambda. The second step is a change the configuration settings for the burner.

From the main menu by selecting **BURNER** we get to the settings

Here you can again enter the mode **SERVICE** and if required, enter the access code

In the list, you can locate the position **Lambda control**, which switches on **YES**. It is also possible working with switched off Lambda control mode. Then Lambda oxygen sensor module will be responsible only for displaying the measurements.

7.2 Solars

Solar collectors are supported only by enlargement module I/O number 5th. After performing all the connections you must configure the controller to work with collectors proceed as described below. The first step is to enable module number 5.

From the main menu select **SETTINGS**

Then in the mode **SERVICE** enter the access code

After inputting the correct code, run the **MODULES CONFIGURATION**

MODULATION	20:54
Module 4	NO
Module 5	YES
Module 6	NO

Find **Module 5** and activate it by changing the settings to **YES**

Now enable the solar handling.

As the main menu select SETTINGS and then enter the access code in the **SERVICE** mode

<u>Settings</u>		20:54
2	SER	VICE

After entering the code run **SYSTEM CONFIGURATION**

Find the position **Solars** and activate them by changing the settings to **YES**

MODULATION	20:54
Outside temp. sensor	NO T
Return temp. sensor	NO
Solars	YES

After finishing configuration the controller we can start to change the adjustment and settings for Solars. Description of the configuration these elements can be found in chapter 6.8.

8 Specification

8 Specification

Technical data		
Supply voltage	~230V/50Hz ±10%	
Power input (driver)	<6VA	
Temperature measurement accuracy	±4°C	
Sensors	NTC 10kΩ B _{25/85} =3877K±0,75%	
	VISHAY BC components	
Ambient temperature	0-60°C	
Moisture	5-95% non-condensing	
The dimensions of controller	175 x 53 x 200mm	
(L x W x H)		
Controller weight	620g	
Software class	A	
Output load capacity		
CH pump	100W	
HW pump	100W	
Igniter	400W	
Blower	150W	
Burner feeder	150W	
Feeder tank	150W	

CE

Manufactured by:

Estyma electronics al. Lipowa 4 11-500 Gizycko POLAND tel. +48 87 429 86 75 fax +48 87 429 86 75 biuro@estyma.pl

www.estyma.pl